
AD-A264 222 ATION PAGE FormApproved
I !il I~ON DI PAGEiO4~4 .nduO~AQ $90 hrT~OMBNo. 07040 188 t, Q "-"n

.19 01 IflfO".4$$Of, S*fl COtr9•nWrSl regarOMng IPjt obJfo" ogtl an O $y C ,lf i@S m¶ • h t %ot o o 0.

.. . . *•.,. ,V= l $*'9U,0 WQa n6(S SeNcet. DN o9 0ale fOt wflof flho f Oon o rjo ne am RaM oo t,. 1215 Jefole oct O Ian IWy Sulo 1204. AI gOn

VA 222024302. &ro totne Ofice of Manaoenw.'1 irO Budqg. PaM 4wok Re gOuC on Peooe d {0704-0'8. W a•Snnqton, DC .0 1.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Apri 199 Speial.Technical

4. TITLE AND SUBTITLE S. FUNDING NUMBERS
Undecidability in Macroeconomics (Preliminary NAG2-593
Draft)

6. AUTHOR(S)
Siddharth Chandra and Tushar Deepak Chandra

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Department of Computer Science REPORTNUMBER
Cornell University 93-1340

9. SPONSORING/MONITORING AGENCY NAME(S) AND AQPfE$!SS.- . 10. SPONSORING/MONITORING
* AGENCY REPORT NUMBER

DARPA/ISTO

11. SUPPLEMENTARY NOTES I 07N

12a. DISTRIBUTIONIAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Please see page i.

93-10785

14. SUBJECT TERMS 15. NUMBER OF PAGES
36

16. PRICE CODE

117. SEWURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRAC- ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UNLIMITED
NSN 7540-01-280-5500 Srwid Fworm 29a (Req. 2-891

PnMWTZ Dy ANSI S•. MIf N $S
298I-02

Undecidability in Macroeconomics
(Preliminary Draft)*

Siddharth Chandra**
Tushar Deepak Chandra***

TR 93-1340
April 1993

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

*Research supported by NSF grant CCR-9102231, DARPA/NASA Ames grant NAG
2-593, grants from the IBM Endicott Programming Laboratory and Siemens Corp.
"**Department of Economics, Uris HAll, Cornell University, Ithaca, NY 14853. This
author is also supported by a Cornell Sage fellowship.
***Department of Computer Science, Upson Hall, Cornell University, Ithaca, NY
14853. This author is also supported by an IBM graduate fellowship.

Undecidabiiity in Macroeconomics

(Preliminary Draft)*

Siddharth Chandrat and Tushar Deepak Chandral

April 28, 1993

Abstract

In this paper we study the difficulty of solving problems in economics. For
this purpose, we adopt the notion of undecidability from recursion theory. We
show that certain problems in economics are undecidable, i.e., cannot be solvd
by a Turing Machine, a device that is at least as powerful as any computational
device that can be constructed 12]. In particular, we prove that even in finite closed
economies subject to a variable initial condition, in which a social planner knows
the behavior of every agent in the economy, certain important social planning
problems are undecidable. Thus, it may be impossible to make effective policy
decisions.

Philosophically, this result formally brings into question the Rational Expec-
tations Hypothesis which assumes that each agent is able to determine what it
should do if it wishes to maximize its utility. We show that even when an optimal
rational forecast exists for each agent (based on the information currently available
to it), agents may lack the ability to make these forecasts. For example, Lucas [7]
describes economic models as "mechanical, artificial world(s), populated by in-

teracting robots". Since any mechanical robot can be at most as computationally
powerful as a Turing Machine, such economies are vulnerable to the phenomenon
of undecidability.

'Research supported by NSF grant CCR-9102231, DARPA/NASA Ames grant NAG-2-593, grants
from the IBM Endicott Programming Laboratory and Siemens Corp.

tDepartment of Economics, Uris Hall, Cornell University, Ithaca, NY 14853. This author is also
supported by a Cornell Sage fellowship.

IDepartment of Computer Science, Upson Hall, Cornell University, Ithaca, NY 14853. This author
is also supported by a- IBM graduate fellowship.

ii

Contents

1 Introduction I
1.1 Rational Expectations: a limitation 2

2 The Problem 4
2.1 Introduction1
2.2 Encoding the Turing Machine
2.3 A Basic Economy
2.4 An Undecidable Economy
2.5 Correspondence between the Turing Machine and the Economy......
2.6 The Problem is Recursively Enumerable

2.7 Undecidability Proof 9

3 Applications and Limitations 11
3.1 Applications 11
3.2 Limitations 11

4 Conclusion 12

,, .

-x

1 Introduction

In this paper we prove that there are fragments of macroeconomics about which it is
not possible to reason. In order to do so, we adopt techniques from recursion theory
that are new to the study of macroeconomics. There are two implications of this result.
First, agert in such economies cannot reason about potentially important facts. Sec-
ond, economists studying these economies cannot reason about them either. This result
prompts us to question the applicability of various traditional assumptions about knowl-
edg'2 in economics. These include but are not restricted to the Rational Expectations
Hypothesis and a variety of systems involving the formation of subjective or objective
probability priors. We emphasize that this result applies to closed finite economics. 13%

extension, we also provide an insight into what "...a formal theory of rational decision-
making in an open' universe..." [13 might confront.

This result does not apply to the kinds of models macroeconomists are used to seeing
in journals. Those models have been designed to provide neat answers to a variety
of questions. An important feature that is almost invariably lacking in such models.
however, is a sense of separation of numerous heterogeneous agents or sectors. The result
of this paper might explain why economic models which mimic economies as distributed
systems of interacting agents or sectors are not very popular today: it is difficult and
sometimes impossible to reason about such economies.

Discrete decision processes are central to economic research. Examples of these
processes are the Overlapping Generations Model 110, 15] and the Townsend Turnpike
Model [10, 13]. It is natural to ask whether a systematic method solves such optimization
problems for economies with heterogeneous agents. This question is extremely difficult
to analyze. So we address the simpler question: given an arbitrary economy for which
there is a solution to a decision making problem, is it possible to find that solution? In
this paper, we show by example that this may not be possible even for a finite economy.
Thus the problem is "hard" because of its inherent complexity, and not because the
economy itself is intractably large. We present a problem that is specified in all respects
except for its initial condition and show that it is "hard" to solve.

To prove such a result we use the concept of a Turing Machine. A Turing Machine
is a computing device which is capable of executing any possible computing algorithm
including every possible learning algorithm and fine tuning mechanism. There is strong
evidence that a Turing Machine is at least as powerful as any computational device
that can be constructed [2]. A problem that cannot be solved by a Turing Machine
is said to be undecidable. We use techniques introduced by Reif et al [9] to develop a
methodology for showing that a variety of problems in economics are undecidable. We
apply this methodology to a simple problem for which a solution exists, and show that
the solution cannot be found using a Turing Machine. We thus demonstrate the degree
of difficulty that economists would encounter in characterizing a network econonv in
terms of discrete interacting agents 2 with limited choices.

'The italics are ours.
2These could be consumers, sectors, producers, trading partners etc.

INACCESSIBLE FACTS

A
-,ACCESSIBLE KNOWLEDGEB

INFORMATION SET

Note: C implies A and B

Figure 1: We prove the existence of inaccessible facts.

This paper is divided into two parts. In the first part we present a discussion of
knowledge in economics and an example of an economy in which there are undecidable
problems. The second part consists of four appendices, the last two of which intro-
duce optimization and recursion theory to readers without any background in these
subjects. We strongly recommend that readers who are unfamiliar with the economic
or computational concepts used in the first part of the paper refer to these appendices.
Supplementary remedial readings are also suggested in each appendix.

1.1 Rational Expectations: a limitation

We use the exposition in Wan [16] to summarize rational expectations:

* Individuals form subjective probability distributions over future events.

9 These distributions agree with the objective probability distribution of events based
on given information.

e This information includes past history, government policy and the set of relations
and functions that make up the general environment.

* Based on this information, a known outcome follows.

Thus, in order for rational expectations to hold, facts that follow from and only from
an agent's information must be available to the agent. In this paper, we show that there
exist facts that follow from and only from an agent's information that are not computable
by that agent even if (s)he knows the complete specification of the economy (see figure
1). Rational expectations as it is widely understood today shows no awareness of this

'3

phenomenon. While this result is philosophical in nature, it should be of concern to a
variety of economists. In section 3 we outline a few examples in which undecidability is
a concern. The work of Spear [12] is related to this subject.

4

2 The Problem

2.1 Introduction

In this section, we will stale a problem for a finite closed network economy and show
that it is undecidable. Intuitively, our construction will proceed as follows. Suppose
we are given a Turing Machine specification x and an inpul i. We will conslruct an
economy &(x) with an agent a, and an initial impulse I(i) with the following properly.
The impulse I(i) reaches a in E(x) if and only if ox halts on i. In other words. we will
reduce the halting problem into a decision problem for a finite closed economy. By doing
so, we will have shown that the set of such problems is not recursive. This follows from
the fact that the halting problem is not recursive.

2.2 Encoding the Turing Machine

Suppose the given Turing Machine is T = (Qr, r, -, E, 6TS, qo, q", q,) where F = {0.1}.'
We construct a new Turing Machine A4 that has exactly one halting state qh such that
M halts on exactly the same set of inputs as T.

The set of states of M is Q = Q-r{qh}. The state transition function of "". denoted
6, includes all the transitions of 6-T and the following four additional transitions:

6 (qa10) = 6(qa, 1) = 6 (q,0,) = 6(q,,) = (qh, lR)

The reader may verify that the resulting Turing Machine M halts on exactly the same
set of inputs as 1. We will now construct an economy that mimics the behavior of A 4

and therefore mimics T.
Our economy consists of n agents, where n denotes the number of states in Q. Each

agent corresponds to a unique state of M. We represent the storage tape of ./" by using
two binary fractions a, and b,. Let go be the symbol which the tape head is currently
scanning.

Let g1 ,g2,g 3 , ... be the successive symbols on the left of go, and hoh 1, h.... be the
successive symbols on the right of go. This is shown in figure 2. Then, we can represent
the storage tape by using two numbers a, and b,:4

a.= 00 giEio 3+1-11

b,, E 3 h, (2)
i=O3t

Turing Machine moves can be divided into two cases, left moves and right moves.
Thus we consider two cases of 6:

3This assumption on r does not reduce the computational power of the Turing Machine.
4 We use 3 in the denominator of our expressions for a, and b,. (91 use 2 in the corresponding place.

5

Tape

g h h h

Read\Write Head
I

Finite
Control

Figure 2: Schematic diagram of a Turing Machine with alphabet {0, 1}.
Note that g,,h, E {9,1}.

Case 1: 6(q,c) = (q',w,L)
Case 2: 6(q, c) = (q', w, R)

Here, q is the current state of M, q' is the next state of A4, c e {0, 1) is the symbol
below the tape head, and w E {0, 1} is the symbol which the tape head writes on the
tape. L represents a left move, and R represents a right move. We now map the state
transition function 6 into the transition operation of an economy as follows:

Case 1: Left move 6 (q, c) = (q', w, L). Let ab and bb be the values of a, and b, respectively
after this transition. Then, ab and bb can be written as:

ab=3 ý = 3(a, - -) (3)
113z+' 3

w 1 h, w b,
bb=- 3 + - (4)

3 3 j= 3 3
Case 2: Right move 6 (q, c) = (q', w, R). In this case ab and bb can be written as:

ho w I•- ho 0-w a, -S
ab=-3-+ + ._3,--= -3 - -9 + 3 (5)

0

Sh, ho
bb =3Z 31-=3(b, -- (3

In the next few sections we present agents who perform the very transformations
listed above, and then redirect the impulse to the agent correspcunding to the new slat.
of M. Thus our economy will simulate the above Turing Machine.

2.3 A Basic Economy

Given the Turing Machine and its encoding, we can construct an economy as follows.
Each state of the Turing Machine's finite control is represented by a unique agent of the
economy. The computation of the Turing Machine is encoded as an impulse that flows
through the economy. At any instant this impulse will reside at exactly one agent. This
agent corresponds to the current state of the finite control of the Turing Machine.5 The
magnitude of the impulse represents the value of the tape of the Turing Machine.

When an agent receives an impulse, it optimizes its utility function and transmits
a new impulse to one of two6 neighbors (see figure 3). The choice of the neighbor to
whom the impulse is transmitted depends on the state transition function of the Turing
Machine as follows. A state transition from a to a' of the given Turing Machine is
encoded by an impulse transmitted by the agent corresponding to 0, towards the agent
corresponding to o-'. The optimization function of each agent is designed to ensure that
the dynamics of the economy mimic the computation of the given Turing Machine.

Since the number of states of the given Turing Machine is finite, the number of agents
in the economy is also finite. The intensity of the received impulse plays an important
role in deciding with whom the receiving agent is going to interact. The process of
reoptimization may result in the absorption or magnification of some of the intenmiv of
the impulse.'

2.4 An Undecidable Economy

We consider the following economy: there are four consumer goods, a, b, c and 4,. and a
leisure good 1. The economy consists of a variety of agents who can consume any or all
of these goods, but can produce either one unit each of a and b, or one unit each of c
and d only. The goods in each production pair are referred to as related goods. Each
agent can buy goods from either a producer of a and b, or from a producer of c and d.
Goods are bought by transforming leisure into labor, at the constant marginal cost of 1.
Figure 3 shows a section of the economy.

5This statement has a small technical flaw. Jn Appendix 3 we discuss this flaw and present a
specificption for the economy which overcomes this flaw. We have avoided this technical discussion in
this section to make this paper easier to read.

6The problem can be generalized to a problem of choosing among many choices.
7This model is motivated by a discrete-choice making process which results from an impulse. An

example is an agent faced with a finite number of possible actions, of which he must choose one. His
action causes the agent he interacts with to adjust his behavior, and so on.

1 Endowment: (a,b)
-- ? Utility: U = Uk(a,b.cd,I1

Endowment: (a,b) 2 3-Endowment: (cd)
Utility: U = U2(abcdj) Utility; U = U3(a,bcd.l)

Figure 3: A section of the economy

Following are the variables used in this analysis.

i = quantity of good i sold to the preceding agent in a period
ib quantity of good i bought from the subsequent agent in a period
i= quantity of good i consumed in a period

where i is one of the four consumer goods. The utility function of agent j is of the
general form:

4

U, ZKj iý: +1 (7)
t= 1

where
- ~i=}) (8)

Thus the utility function is continuous and concave in a,, bc, c, and d,. The parameter
K1, is a function of the quantity of produced goods sold by agent. j. We motivate this
by an 'information effect' on an agent's utility function.

Figure 10 in Appendix 2 shows the different values that K,, can take on for producers
of a and b. The corresponding values of K1, for producers of c and d are obta-ned by
replacing a, with c,, b, with d,, ab wit] Cb, etc.

The constant K,., for any good is a function of i,, where i is the good itself or the
related good. The motivation for i, entering Kj, is as follows. An agent's marginal utility
for a good depends on how much of the good itself and the related good the agent sold.

We now emphasize some aspects of the economy. Note that all utility functions are
concave (weakly so in the case of leisure) and increasing in their arguments. The economy
has heterogeneous agents, i.e., different agents may have different utility functions. Thus
the economy is consistent with traditional assumptions of economic theory.

We now solve the optimization problenm for one possible type of a and) prod mucel.
See Appendix 2 for the solutions to the problems for all types of u and b producers. The
solution to the problem for the c and d producer is similar and is left to the Ye(ýer.

The first case of Appendix 2 .s solved below. This case corresponds to lhi, toilowiirg
transition in the Turing Machine simulation. The value in the tape cell below the tape
head of the Turing Machine is 1. The state transition function of .M/ fol the current
state requires the tape head to write a 1 and move to the left.

In this case, the agent chooses to buy a and b. The consumer's problem is:
, -•- • ~-1- - 2 b, '•Max U a,,a2 + 0.1c ý 2(-- bi, I d I

3 2

subject to

ac = 1-a,,aa,, (10)
b,. = I - b, +bb H I1.

c, = c6 (12)

d = dt13

The first order conditions for an optimum are:

(2a,). = 1 (14)

4 - 2b,• _3)rbc 1 (15)

0.05cc = 1 (16)

0.05d, 2 1 (17)

This condition will hold for the two goods which were bought: the agent will not be
willing to work for wages beyond this point, because leisure will be more valuable at the
margin. Because of the restriction on choice, the first order conditions will not hold for
the two goods which were not bought.

If a and b are bought, then a, = 2a, and ab = 3a, - 1. SimilaAy, b, = V(2 - b,) and
bb = !(I - b,). If c and d were to be bought, then c, = cb = 1 and dc = db = . It can
be checked that the utility from buying cb and db is lower than the utility fro i buying
ab and bb. Thus a and b are bought and:

ab = 3a, - 1 (18)

bb 1 + b_ (19)

Recall that in this case the value of the tape cell below the tape head yo is 1. It is
easy to verify the the impulse passed on to the next agent, i.e., (a6, b 6) corresponds to

the case in which the tape head writes a I and then moves left (see Equations 3 and 4).

The optimizatior problem for the oihler tYpes of a and b IJ)PAducer U;"Id for Ahe f and
d producers can be solved in an analogous manner. A summary of the coefficients k,
for these cases appears in the figure in Appendix 2. Thus we have sinmulated a Turing
Machine using a simplistic economy consisting of producers and consumers who must
make discrete choices.

2.5 Correspondence between the Turing Machine and the Econ-
omy

In the introduction to this section the stated problem was whether an impulse 1(0) reaches
an agent a. We can now relate these elements of the economy to the corresponding
elements of the given Turing Machine Avi.

* The agent a corresponds to qh, the halting state of Al.

"* The initial shock to the economy is determined as follows. Let i denote the initial
value of the tape of A4. Then 1(i), the initial shock to the economy is (a,,b,) as
defined in Equations 1 and 2.

In summary, our construction mimics Al as follows. ," halts on input i if and only if
an initial shock I(i) reaches a in E(x).

2.6 The Problem is Recursively Enumerable

In our model economy, the path along which the impulse travels can be partitioned into
agent-to-agent subpaths. Since each subpath is an element of the solution to a simple
problem, the total path can be determined by a rational agent. Thus the problem is in
principle solvable, and a Turing Machine is capable of enumerating all the perturbations
which will ultimately affect a given agent. The problem is thus recursively enumerable.
In the next section we show that the problem is not recursive, i.e., a Turing Machine is
not capable of enumerating all the perturbations that ncver affect a given agent.

2.7 Undecidability Proof

We have shown our system and its relation to the Turing Machine. By simulating each
state as an agent and routing the impulse between the agents, we can simulate any
Turing Machine. Thus we have:

Theorem 1 The following language is undecidable:

{(I, E, a)j initial impulse I reaches agent a in economy 8)

Recall that the Universal Turing Machine can be used to simulate any Turing Machine
on any input. Let u denote the specification of any Universal Turing Machine and let

10

F(u) denote the economy that mimics a. Let a denote the agent in ((u) corresponding
to the halting states of u. For any Turing Machine specification x and input i. O halts
on input i if and only if the initial shock I((x, i)) reaches a in E((). Thus there is a
particular finite economy F(u) with a particular agent a for which we can show:

Theorem 2 The following language is undecidable:

{II initial impulse I reaches agent ci in cconomny F(u)}

We encourage the reader to contrast the statements of Theorems I and 2.

11

3 Applications and Limitations

3.1 Applications

In this section we mention a few areas in which the concept of undecidability is applicable.
The areas are trigger problems in macroeconomics, game theory and spectral analysis in
econometrics. For all of these examples, consider the kind of network economy presented
in section 3.

"* Trigger Problems in a Multi-Sector Economys

Consider a node of an economy which releases a significant impulse L2 if it receives
an impulse I,. If the question of whether impulse I, ever passes through the node
is undecidable, then no economist or agent with rational expectations will know
whether the significant impulse 12 is eve- going to be released. In this framework.
our modelling capability and rational expectations are compromised.

" Game Theory - a dynamic example
Consider a repeated dynamic game whose extensive form looks like the economy
97-. Then each node in the tree represents a move by a player. The problem of
whether the game passes through a given node is undecidable.

"* Spectral Analysis in Time Series Econometrics
In the above economy, the question of whether or not an impulse passes through
a certain node of an economy is undecidable. Thus a time series econometrician
collecting data at that node can never be sure that (s)he has a complete set of
data, because (s)he will never know when to stop collecting data.

The above examples are a small subset of the conceivable range of undecidable prob-
lems.

3.2 Limitations

It is important to recognize the limitations of this result. A number of traditional
problems are decidable. Examples are certain problems involving homogeneous agents,
convergent infinite sequences and finite time horizons. These problems can be solved by
a suitably encoded Turing Machine. To the extent that economists are satisfied with the
realism of such problems, the issue of undecidability is not important. However, should
economists try to model the world as it actually is, in terms of a network of interacting
sectors or agents making discrete choices, the issue of undecidability must certainly play
a role in their concept of knowledge in economies.

8 Modelh which attempt to closely mimic macroeconomic real*,y, such as Competitive General Equi-
librium (CGE) models, are also the types of models which are most susceptible to the problem of
undecidability.

12

4 Conclusion

In this paper we have shown that certain problems in economics are uduzdmcablf. This

provides a formal basis for challenging the validity of the rational expectations hypotlhesis

in the context of such economies. The argument is that there are facts which follow from

and only from an agent's information which the agent cannot compute. Philosophfically.

undecidability illuminates a problem for economists: there are fragments of economics

about which it may not be possible to reason,

13

Appendix 1

In section 2 we showed that the execution of any given Turing Machine can be mimicked
by the corresponding economy. In this appendix we illustrate a minor technical flaw in
our construction and show how it can be corrected. We first illustrate the flaw with an
example.

Suppose q, q0 and q, are states of the given Turing Machine such that ý(q, 1)
(qi, x, y) for some x and y, and 6(q, 0) = (qo, x'. y') for some x' and y'. Then the economy
has three agents a, a, and a0 that correspond to the states q, q, and q(respectively.
Our construction requires a, to be a producer of a and b, and (x(to be a producer of c
and d.

Further suppose that q' is another state of the given Turing Machine such that
6(q',0) -= (qi, x,y) for some x and y. Our construction requires ai to be producer
of c and d. In this situation our construction fails. Figure 4 shows the flawed economy.

q q
abcd

0()•d 1 0

01 1 01 1

c,d a,b or c,d a,b%q

Figure 4: A construction of the economy showing the technical flaw.

We overcome this problem by converting the Turing Machine

T = (Q,F,I,- , ,qo, q,,q0)

into the modified Turing Machine

T' =(QF,.LE, ', qo,O), qaO),(q•,O))

as follows:

Q' = Q x {0, 1}. In other words, every state q of M is represented by two states
of M': (q, 0) and (q, 1).

14

* 6' mimics 6 as follows. Let q be any state of "i. Suppose that "i changes stale
from q to q' upon reading i, i.e., 6(q, i) = (q', x. y) for sone j- and y. Then
6'((q, 0), i) = 6'((q, 1), i)= ((q', i), x, y).

* To correctly address the halting condition. we also add the following transitions:

6'((q., 1),0)= 6'((q. 1). 1) ((q..W,), ,R)

6'((q•, 1), o) - '((q•, 01), 1) ((.q.0), 1, R\

q q

aa, cCd ii /

"aa c•ad a~ " ,ab c d•

qq,

Figure 5: A construction of the economy used to overcome the technical flaw.

Figure 5 is a visual representation of the above construction. It is easy to verify that
L(M') = L(M) and that our construction works correctly with M'. In summary, given
any arbitrary Turing Machine A4, we first modify it into another Turing Machine AM' as
described in this appendix and then convert M' into an economy using the techniques
of section 2.

15

w ~ 0

1C 7

± - -r-2

-for,
o Al Al Al V~ V~ V V

CD)

16

Appendix 3

Optimization for the Recursion Theorist 9

An Economy

An ecnnnomy consists of a set of people or groups of people, referred to as agenlts, that
produce, trade and consume goods. The endowment of an agent at any time is the set
of goods produced or acquired by that agent prior to that time and currently within its
possession. For example, the endowment of a farmer today may be 100 tons of rice. the
endowment of an investor may be twenty shares in Imperial Chemical Industries etc.

Each agent in the economy consumes goods to satisfy its needs or to derive pleasure.
By consuming different mixes of goods, an agent derives different amounts of utility. For
example, consuming 1 apple and 1 orange might yield a different utility from consuming
2 apples and 1 banana. The utility of an agent is quantitatively captured by a utility
function. Each agent tries to maximize its utility function. Note that (1) different agents
may have different utility functions and (2) the utility function of any given agent may
be affected by the past behavior of that agent and by the behavior of other agents.

Utility Maximization

In practice, economists assume that utility functions are concave.1 0 This captures the
observation that in most cases, every addition 1 unit of a good consumed gives less
additional pleasure.

In order to maximize their utility function, agents may trade a part of their endow-
ment with each other. For example, consider an economy in which there are two agents
A and 0. A is an apple farmer whose endowment is 10 apples and 0 is an orange farmer
whose endowment is 10 oranges. A's utility function UA is

UA(a, o) = 2a2 + o0

and O's utility function U0 is

Uo(a, o) = 2al + 3o0

If A and 0 do not trade, A's utility will be UA(10,0) = 2VT'f0 ; 6.3. Similarly, O's
utility will be approximately 9.5. Suppose A and 0 agree to trade 1 apple for 1 orange,
A's utility will be UA(9, 1) = 7 and O's utility will be Uo(9, 1) = lIl-both benefit from
the transaction. In fact, A would be even happier if (s)he could trade 2 apples for 2
oranges." In order to determine when A will be happiest, we need to solve the following
constrained optimization problem for a and o:

[1111 provides a thorough treatment of this subject.
"t °This convenient assumption has never been proved, and is not. always validated by observed behavior.
"11To keep things simple in this example, we assume that I apple is always traded for exactly 1 orange.

17

MaxUa(a, o) 2a + o2

subject to
a+o= 10.

known as the budget constraint and

a> 0,o> 0

known as nonnegativity constraints.
Using the method of Lagrange, we derive

OUA(a, o) UA(a, o)

Oa o 00

known as the marginality condition.
The function A is referred to as the apple farmer's marginal utility of a and

8a
OUA(a,,) is referred to as the apple farmer's marginal utility of o. In most cases,12 given a

'0o
concave utility function f in n goods 91,9 2 ,. .. g,9, the maximum utility can be determined
by equating all n marginal utilities of f (i.e., with respect to each of the n goods).

In this paper we consider a finite economy, i.e., one with a finite number of agents.
Each agent has a set of neighbors with whom it can perform transactions. This is indeed
the case in practice, since an agent can only interact with other agents that are "nearby".
In other words, if the physical or temporal distance between two agents is sufficiently
large, they cannot trade with each other.

We assume that time progresses in discrete units. In each time unit, an agent makes
a decision based on its endowment and its utility function, and may participate in a
transaction with one of its neighbors.

We subject this economy to an exogenous shock. An example of an exogenous shock
is an increase in the endowment of an agent. In practice, this may be achieved by reduced
taxation, low-interest loans, an outright grant etc. As economists, we wish to determine
what effect that this action will have on the economy. In particular, we wish to determine
whether an agent A will be affected if an agent B's endowment is increased. In practice,
this ability helps in policy decision making. For example, consider a government that
would like ensure that all its citizens receive at least a subsistence amount of food. One
possible way of achieving this goal would be to provide a subsidy to all farmers in the
economy and hope that some of the benefit in reduced food production "costs" is passed
on to the poor.

Thus the government wants to solve the following problem: if the endowment of the
farming sector is increased, will the poor benefit sufficiently? More generally, we can
study the following abstract problem: if the endowment of an agent A is increased, will
another agent B be affected?

"A common exception is a "corner" solution.

We show that in general, this problem is uridecidablc. Given an arbitrary Turing
Machine T, we show how to construct an economy e. in which an agent B is affected
by the perturbation if and only if T halts on an empty tape. Technically, this result is
similar to showing that a ray tracing problem is undecidable 19).

19

Appendix 4

Introducing Recursion Theory to Economists

Introduction

In this section, we go over some key concepts in recursion theory. An understanding of
these concepts is necessary for an understanding of the result of this paper. First, we
define some terms necessary foi an understanding of recursion theory. Then, as a step
toward understanding the Turing Machine, we present a weaker and simpler computa-
tional device called the Deterministic Finite Automaton. The concept of a Deterministic
Finite Automaton also serves to emphasize the power of the Turing Machine. Finally.
we introduce the Turing Machine and state some fundamental theorems that we will use
to derive our result.

This section summarizes the exposition on Deterministic Finite Automata and Turing
Machines in [5, 6]: we make extensive use of the language and organization of [5, 6].

Basic Definitions

In this section we introduce the economist to Recursion Theory. We provide the defini-
tions of terms used in sections 4 and 4. A more detailed treatment of these concepts is
available in [51.

Definition 1 An alphabet is a finite set of symbols.

For example consider the set of equations in elementary calculus. The alphabet for this
set, denoted Ei, contains the following symbols:

1. The digits, 0,1,...9.

2. The decimal point, ".".

3. A finite set of connectives and operators, +, -, x, a, , =, (,), 0, d, f, lim, -, sin.
cos, etc.

4. A finite set of variables x, y, etc.

5. A finite set of constants 7r, e, etc.

Clearly, this set of symbols is finite. We use the symbol E to denote an arbitrary alphabet.

Definition 2 A string over an alphabet E is a finite list of symbols belonging to the set
E.

For example,

dy + dx = x-2 + ei(-x) (20)

is a string over E,, the alphabet for the set of equations in elementary calculus.

20

Definition 3 The concatenation of two strings x and y is denoted by xy.

Definition 4 E* denotes the set of all strings over the alphabet E.

Definition 5 The length of a string x, denoted Ixi is the number of sqrmbols in x.

For example, the length of the string in Equation 20 is 16.
Clearly not all strings over E, belong to the set of true equations in elenientary

calculus. For example consider the following strings:

1. "x(" is not well-formed. It violates the rule that the number of open parentheses
in an equation should equal the number of closed parentheses in an equation.

2. "1 = 2" while well-formed, is false.

Informally, the concept of a language is used to differentiate between 'acceptable- and
"4unacceptable" elements of E*. Thus the two unacceptable strings above do not belong
to the language of equations in elementary calculus.

Definition 6 A language over E is a subset of E*.

A decision problem is specified by a set A of all possible inputs and B C A of
"acceptable" ins'ances. For example the following is a decision problem: is a specific
sector in an economy affected by a trade shock. The set of inputs is the set of all possible
trade shocks to the economy. The subset of "acceptable" instances is the set of all trade
shocks which affect the specified sector.

Definition 7 A decision problem over E is a function from E* that returns a "yes" or
"no " answer.

Systems, States and Transitions

Intuitively, a system is a set of agents and relations connecting the agen's. The state of
a system is a complete, instantaneous description of the system. In particalar, the state
of -, system provides all relevant information about each agent in the system and the
relations connecting them at the given instant.

Every system, is governed by a set of laws called the state transition function of that
system. The state transition function determines how the state of the system evolves
over time. For simplicity, we assume that the state transitions occur instantaneously.

As an example, we consider the following economy with n agents that trade in a
common market. Each agent a has a utility function Ua, which it tries to maximize.
The endowment of a at time t is denoted by Ej(t). At the end of time period t, agent
a selects xa units of one commodity ca from its endowmet and exchanges it for other
commodities from other agents. In exchange for c,, agent a acquires a basket of goods.
ba.

The state of this system at time t is an n-tuple (Ea,(t), E, 2 (t), ... ,Ea, (t)\. The state
transition function of this system is the solution of the utility maxirization problem for
each agent. Thus if we are given each agent's utility function and the current state of
this system, then we can determine how the system will evolve over time.

"21

The Deterministic Finite Automaton

In this section we briefly describe a simpl2 class of computing devices known as l)eter-

ministic Finite Automata. We use some of the notation of 151 and V.

Definition 8 A Deterministic Finite Automaton is a 5-tau p

M = (Q,,6, qu, A;

where:

1. Q is the finite set of states of M'!.

2. F is the finite alphabet of ./.

3. 6: Q x v -- Q is tie state transition function of A'!.

4. q0 C Q is the initial state of M'!.

5. A C Q is the set of accepting states of . 4 .

The Deterministic Finite Automaton AM works as follows. It starts in its initial state.
qo0 At each time period, it reads one symbol from its input and changes its state based
on its state transition function. We say that M'! accepts it at the end of its input it is in
an accepting sla~te, i.e., a state in A. Otherwise, we say that A. rejects. Thus the set of
inputs on which M accepts defines a language on Y.

Definition 9 If on input x, M accepts, we say .M accepts x.

Definition 10 The language of a Deterministic Finite Automaton A'M, denoted L(M.).
is {x e F*IM accepts x}.

Definition 11 A set S C E* is called regular if and only ifr there is a Determiiiistic
Finite Automaton M such that L(M) = S.

An Example

As an example consider Ml, a Deterministic Finite Automaton that accepts {x E {a. b}j*L"
does not contain the substring aba}. The set of states of M'! is {qo, ql,q 2, q3}. The
alphabet of M is {a, b}. The initial state of M is q0. The set of accepting states of Ml is
{qo, qj, q2}. The state transition function of .M is given in figure 6. To illustrate how M-I
functions, we show all the state transitions of A4 when its input is aaabba. See figure 7.
When M reads the last symbol of the input (i.e., a), Ml enters the state q1. A.4 accepts
aaabba because q, is an accepting state of A-.

As mentioned earlier, Deterministic Finite Automata have limited computing power.
This is illustrated by a theorem known as the pumping lemma. This theorem states thai
there is no Deterministic Finite Automaton that accepts certain sets of strings that are
very simple to specify. We next explain the pumping lemma briefly and show that the
set {xjx = anb n for some n} is not regular.

at)

l'i'uie 6 : State transit ion funuct ion fot I, Dtermninistic. Finite Autotnialon A

S~tal t Input Symbol Next State

qa a

q a
q, b q2

q2 b , q O,

qo a q

Figure 7: Deterministic Finite Automaton A. responding to aaabba

The Pumping Lemma

The intuition for the pumping lemma is the following. Consider a Deterministic Finite
Automaton Ml such that L(.M) is infinite. Since A4 consists of a finite set of states., there
exists a sufficiently long string X E L(M/V) that will force the automaton to repeat at least
one state. Thus x is of the form abc where q, the state of A4 after scanning a, is the state
of M after scanning ab. Since M cannot tell the difference between two visitations of
the same state, the state of A- after scanning abb must be q. Thus the substring between
the two visitations of the repeated state can be inserted into the string before the first
occurrence of the state and the newly constructed st ring will still be accepted.

This observation can be used to show that the set S ={xtr is of the form aObT'}'
is not regular. i.e., there Is no Deterministic Finite Automaton that acceptas precisely
this set. This is proven by contradiction: suppose there exists a Deterministic Finite
Automaton AM such that L(,A) = S. Take a St ring of the form ait b such that ms is
greater than the number of states in MA . There must exist x and y,u x < y < r such that
the state of A4 after it scans a', is the same as the state of A- after it scans a0. We
leave it to the reader to verify that a niust accept a be .T a string that is clearln
not in S,

'a denotes a string of n conrepcutive as a* denotes a string of any number of consecutive Qis.

23

Turing Machines, Computability and Undleci(lability

Introduction

The Turing Machine was invented in 1936 b)y Alan Turing !14'. It was conceived at a tim1(
when mathematicians were trying to define the concept of computability of functioDns.
Examples of such efforts are Church's A-calculus [2], Post's Post systems i. GodeCs
p-recursive functions [3]. etc. Later mathematicians showed that all of these syst ems are
computationally equivalent, leading Church to declare that each system captured thw
intuitive notion of "computable". This declaration is known as Church's Thesis. Church's
Thesis is widely accepted by Recursion Theorists, and there is no known! computable
function that cannot be programmed by a Turing Machine. Recursion Theorists use
the Turing Machine to define computability. Informally, a language L is said to be
computable if and only if there is a Turing Machine that accepts L.

An Informal Description of Turing Machines

In this section, we provide an intormal description of Turing Machines. Essentially, a
Turing Machine is a Deterministic Finite Automaton (see page 21) augmented with a
one-way infinite 1 - dimensional tape on which it may read and write values (see figure
8). The tape of the Turing Machine is divided into an infinite number of tape cells. each
of which contains a symbol in F, an alphabet that contains E and a blank symbol - ý E.
The Turing Machine accesses the tape via a single tape head. The Turing Machine may
read, write or overwrite a symbol on the tape cell beneath the tape head. A state
transition for a Turing Machine consists of a change in the state of the Deterministic
Finite Automaton associated with the Turing Machine, a command to write a symbol
in the cell below the tape head, and a command to move the tape head one cell to the
left or right. The input to the Turing Machine is a finite string from E" and is initially
written on the tape in contiguous tape cells (see figure 8). The infinitely many cells on
either side of the input are assigned the blank symbol 1.

The Turing Machine starts in its initial state qO with its head scanning the leftmost
symbol of the input. In each step the Turing Machine reads the symbol on the tape cell
beneath its tape head, and depending on that symbol and the current state of the Turing
Machine, it writes a new symbol on that tape cell, moves its tape head either one cell
left or right and enters some new state. The action taken by the Turing Machine in each
situation is determined by its state transition function 6. It accepts its input by entering
a special accept state q, and rejects its input by entering a special reject state q,. The
Turing Machine is said to halt on input x if it either accepts x or rejects x. Note that it
may do neither, by running infinitely on input x without ever accepting or rejecting.

A Formal Description of Turing Machines

Definition 12 A Turing Machine [5] is a 8-tuphe

M = (Q,F,,E,6,,qo, q.,,qr)

2-1

- Tape

a. a b a b b b a b a

Read\Write Head

Finite I

Control

Figure 8: Schematic diagram of a Turing Machine with f {a. b}.

where:

1. Q is the finite set of states of M.

2. F is the set of allowable tape symbols of M.

3. .1 is the blank symbol of M.

4. E is the set of input symbols of M. Note that E C F - {-}.14

5. 6 Q x F -- Q x F x {L, R} is the state transition function of A,.

6. q0 E Q is the initial state of M.

7. q, E Q is the accepting state of M.

8. q, E Q is the rejecting state of M.

Figure 8 is a schematic diagram of a Turing Machine. Q and q, for a Turing Machine are
the same as Q and q0 for the Deterministic Finite Automaton of the Turing Machine.
The input to the Turing Machine is in E* for some alphabet, E. Each tape cell contains
one symbol from a set F, a superset of E that contains I, the special blank symbol. The
state transition function of the Turing Machine now returns a triple rather than just the

"I4In some cases, E is a proper subset of F - {f}. In our example in figure 9, F = EU {11, 4}.

25

state of the Deterministic Finite Automaton of the Turing Machine. As bef)bre. (ý(q.u)
describes the actions of the Turing Machine when it is in state q and the tape cell below
its tape head contains the value a. If 6(q, a) = (q', a, d%. then the operation of the Turing
Machine is as follows.

1. The Turing Machine writes a' on the tape cell below its head

2. The Turing Machine moves the tape head in direction d (either left. denoted L or
right, denoted R).

3. T _, Turing Machine enters state q'.

In addition, once the machine enters the accept q, or the reject state q,. its execution
halts. If it halts in q,, we say that it accepts. If it halts in q,, we say that it rejects.

Definition 13 If on input x, ;" accepts, we say Ad accepts x.

Definition 14 If on input x, Ad rejects, we say Ad rejects x.

Definition 15 The language of a Turing Machine Ad, denoted L(1M), is {x E EIA'4
accepts x}.

An Example

As an example, consider A4, a Turing Machine that accepts the set {a'b'chjn > 0}. E.
the set of input symbols of AM is {a, b, c}. The blank symbol of M is I. Apart from _L
and the symbols in E, F contains the symbol 4 called the erased symbol. Thus the set
of allowable tape symbols of Ad is {a, b, c, 1, 4}.

Informally, .M repeats the following procedure as often as possible:

1. If there does not exist at least one each of a, b and c, then A" stops and decides.

2. If there exists at least one each of a, b and c, the head goes from left to right over
the input, erasing the first a, the first b and the first c.

3. The head goes back to the beginning of the input.

At the end, if there is any symbol in {a, b, c} left, then clearly the string is not of the
form a'b'•c. Also note that care is taken to avoid strings of the form abaccb, i.e.. strings
with an equal number of a's, b's and c's but not of the form a*b*c*. The state transition
function of AA is given in figure 9.

Note that the above set is not regular. That is, we can use the pumping lemma to show
that there is no Deterministic Finite Automaton that will accept this set. The reader is
encouraged to verify that AM actually accepts a'b'•c by trying out a few examples.

2 G

State a b T c - ,

qo (qi, 4, R) q61 b, R) (q,,,c, R) q. I, RjI? (q(,, H
q, (qi, a, R) (q2, 4, R) (q6, c. R) (q6,±) (q•,4 1?

q2 (q6, a,R) (q2,b,R) (q3 ,4.R) (q6 1 -LR) 0, 44, 1.)

q3 (q6, a,R) (q6, b,R) (q3, cR) (q4, -L,) Kq3, 4,1R
q4 (q4 , a,L) (q4, b,L) (q4,c,L) (qo,±,R) I q4,
q5 This is the accept state
q6 This is the reject state

Figure 9: State transition function for Turing Machine AA

Decision Problems and Recursive Functions

In the previous sections, we saw Turing Machines that check whether a given string is in
a language. A Turing Machine can also be used to compute a function as follows. The
tape of the Turing Machine is initialized to contain the parameters of the function; the
tape head initially scans the leftmost symbol of the input. The output of the function
is taken to be the value written on the tape when the Turing Machine goes into its
accepting state.

Definition 16 A function f is recursive if and onlg zf there is a Turing Machine .l
such that on every input x in the domain off, A4 eventually writes f(x) on its tape and
enters its accepting state.

Given a Turing Machine M that computes a function f and a Turing Machine A"' that
solves a decision problem, we can "concatenate" M and M' as follows. We can construct
a Turing Machine M+ that first runs M. When MA enters its accepting state, A,• runs
M'. Thus M+ accepts {xjf(x) E L(M')}. More precisely, given

M= (Q,F,-,E,6, qo, q.,q,)

and
M'= (Q, r, -, E, 6', q', q', q.)

Assuming for simplicity that Q and Q' are disjoint, we can construct

M+ = (Q+, F, -L, E, 6+, q+ ,q+,)

where

1. Q+ =QUQ'-{q,,,qr}

J 6'(q,a) if q E Q'
2. 6 +(q, a) = (q, a', d) if 6(q, a) = (q', a', d) and q' $ qa

(qa', d) if 6(q, a) = (q', a', d) and q' =q

2"7

3. qO = qo
4. q- = q" and q4 = q'.

A• ,, A' denotes the concatenation of A. and Al'.

Decidability and Undecidability

Defin'.:on 17 A set S C '" is called recursively enumerable (abbrcruat(d r, . if wid
only if there is a Turing Machine .l such that L(.AI) = S.

Definition 18 A set S C E* is called recursive if both S and . are recursiveIly (riluln r-
able .15

A property is decidable if there exists a Turing Machine that accepts all strings with that
property and rejects all strings without that property.

Definition 19 A property is decidable if and only if the set of all celments haring that
property is recursive.

A property is undecidable if there is no Turing Machine that can determine whether an
arbitrary given string has that property.

Certain properties are undecidable. For example, there is no mechanical procedure
that can be used to tell whether or not a string causes a Turing Machine to halt, In par-
ticular, there is no finite set of axioms and inference rules that can be used to determine
which strings and Turing Machines have this property and which do not.

Note that the terms "recursive" and "recursively enumerable" apply to sets. The
terms "decidable" and "undecidable" apply to properties of elements of sets. By a
slight abuse of terminology, we say that a language is undecidable if there is no Turing
Machine that can determine whether an arbitrary given string belongs to that language.
[4] contains a good intuitive description of the above concepts.

Universal Turing Machines

As we saw earlier, a Turing Machine is specified by an 8-tuple (Q, F, I, E, ,.qo q,. qr.
It is easy to encode this specification so that the only symbols that occur in it are "0-
and "1". Thus the specification of the Turing Machine can be given as a string over the
alphabet {0, 1}.

With this encoding technique in mind, we can view the set of specifications of all
Turing Machines as a language over {0, 1}. That is, each specification of a Turing
Machine corresponds to a unique binary number. The Turing Machine specification
corresponding to the number x is denoted 0,.

Note that 0, is not defined for all x since some numbers do not correspond to a Turing
Machine specification. This is notationally inconvenient. Thus if x does not correspond

115 is used to denote the complement of the set S.

to a Turing Machine specification, O, is defined (by defaull) to be the Turing Machint
that accepts 0.

A Universal Turing Machine is a Turing Machine whose language is the set of pairs of
Turing Machines "'1 and strings .2 such that x E L(,Av). Inuit ively, the lVniversal Turingg
Machine is capable of simulating eyery Turing Machine. More precisely. ih fe alphabet, of

a Universal Turing Machine is {0, 1}. The Universal Turing Machine ac(,.pts the siring
(x, y) if and only if o, accepts y. 'lb see the construction oi - Vniversal Turing Machin..
the reader is referred to [5].

Since the Universal Turing Machine is capable of simulating every Turing Machine.
it is capable of simulating itself. The property by which a Turing Machine can simulat,
itself is called self reference. This allows us to use a proof techniquie called daygonahlzatiort
to prove that some problems are undecidable.

Diagonalization

We first illustrate the method of diagonalization with what is perhaps its simplest ex-
ample.

Theorem 3 There is an English sentence that is neither true nor false.

PROOF: Consider the sentence:

"This sentence is false."

Let us assume for contradiction that this sentence is either true or false. There are two,
cases to consider:

1. The sentence is true. In this case, the sentence is false-a contradiction.

2. The sentence is false. In this case, it is false that the sentence is false, i.e., the
sentence is true-a contradiction.

Note that the above sentence refers to itself.
The technique of diagonalization was first used by Cantor [4] at the end of the last

century to show that there does not exist a one-to-one correspondence between the
natural numbers N and 2Nv, the power set of N, which is defined as follows.

Definition 20 The power set of a set A, denoted 2 A, is the set of all the subsets of A.

Cantor's argument is as follows: Suppose for a contradiction that there is a one-to-one
and onto function

f : N 2v

_ _ 2 3 4 5 6 7 8 9 ...
f (1) 1 0 0 1 0 0 1 o 0 .

f(2) 1 0 0 1 1 1 0 0 1
f(3) 0 0 0 0 1 1 0 0 1 ...
f(4) 0 0 0 0 1 1 1 0 0
f(5) 1 1 1 1 1 1 1 0 0 ..
f(6) 0 1 1 1 1 0 1 0 1 ...
f(7) 0 1 0 1 0 1 0 1 0 ...
f(8) 1 0 1 0 1 0 1 0 1
f(9) 1 0 1 0 0 1 1 0 1 ...

Figure 10: An example of Al showing the relationship between X and 2'.

We can build the following infinite two-dimensional matrix, -I:

= I ifj E f(i)
0 ifj f(i)

In other words, each row of M represents a different function. The 1st row denotes f(1).
the second row denotes f(2), and so on. For example, figure 10 represents one possible
matrix M. f(1) = {1,4, 7, ... }, f(2) = {1,4,5,6,9,... .}, and so on. By our assumption
that f is onto, every subset of N appears as a row of the matrix.

Now we will use diagonalization to derive a contradiction. Construct the complement
of the infinite string down the main diagonal of the matrix by switching the IVs in it to
O's and the O's to l's. In other words, construct S C N as follows:

i E S if and only if M,, = 0 (i.e., i • f(i))

The set S for the matrix M in figure 10 is {2, 3, 4, 6, 7, 8 }. Since f is one-to-one
onto and S C N, there must be a number i such that f(i) = S. Theze are two cases to
consider:

1. i E f(i). In this case, M,, = 1. Hence i ý S. Since f(i) = S. we have a
contradiction.

2. i ý f(i). In this case, M,, = 0. Hence i E S. Since f(i) = S, we have a
contradiction.

Note that this argument can applied to a wide variety of sets other than N. A similar
argument was also used in "Russell's paradox" [4].

30

Undecidability of the Halting Problen

Cantor's simple cardinality argument allows us to prove the existence of undecidable

decision problems. Informally, the proof is as fbllows: there are uncountably nmany

languages over {0, 1}* but only countably many Turing Machines. Thus there must exist

many languages that are not accepted by any Turing Machine.
In this section, we prove the undecidability of one such problem. known as the Haltiny

Problem and denoted H [5]. Informally, H is stated as follows: given a Turing Mlachine

specification i and a string x, does o, halt on x? More formally 1I is the languagedefined
as follows:

H {(i,x)j0,(x) halts}

Theorem 4 The halting problem is undcidable.

PROOF: Suppose for a contradiction that there is a Turing Machine specification h such

that Oh accepts (i, x) if 0, halts on x and 6h rejects (i, x) otherwise. Qh can be represented
as the following infinite two-dimensional niatrix:

(h (ij accepts if 6, halts on j
rejects if 65, does not halt on j

Now we will use diagonalization to derive a contradiction. Consider the following
function dbl defined as follows:

dbl(x) (x, x)

dbl is a recursive function. Let h' = (Q, r, I, E, 6, q0, q,. q,) represent the specification
of the Turing Machine dbl. * . Then Ohl behaves as follows:

O accepts if 0, halts on i
rejects if 0, does not halt on I

Note that oh, corresponds to the diagonal of the two-dimensional matrix representing

Oh. We can construct a Turing Machine specification hV based on the specification h' as
follows. Add a new state qn and replace all transitions to q, with transitions to q,. Thus

0h, and Oh+ behave identically except when Oh' enters q,, Ohc- enters q,. More formally.
we construct h, = /Q+, F, I, E, V, q0, q., q,) as follows:

1. Q+ = Q U qn, where q,, is a new state not in Q

((q',a',d) if 6(q,a) =(q',a',d),q' 0 q, and q n
2. 6+(q,a) = (qn,a',d) if 6(q,a) = (q,,a',d) and q 5 qn

(q, ,a,R) if q = q.

It is easy to verify the following facts:

3 1
"* h- is the specification of a Turing Machine that does not accept any strings. In

other words, L(Oh-) 0

"* If ý)hl rejects string x. then Qh- also rejects x.

* If oh, accepts string x. then Oh- does not halt on x. In fact Oh- enters state q,, and
never leaves that state.

Intuitively o'-- halts on x if and only if 0, does not halt on x. Let us now consider what
happens when we run Oh- with h- as input. There are two cases to consider:

1. Oh- halts on h`. In this case, 6h- does not halt on h--..a contradiction.

2. oh- does not halt on h-. In this case, Oh- halts on h-ý-a contradiction.

We conclude from the above argument that H is not recursive. C
In other words, there does not exist a Turing Machine that can determine in a finite

amount of time whether any given Turing Machine A4 halts on an arbitrary given input
X.

Reducibility: A Tool to Prove Undecidability

In this section we introduce reducibility, a relation that allows us to compare degrees
of difficulty of solving problems. Using reducibility, it is possible to show that many
problems are at least as hard to solve as the Halting Problem. Since we know that the
Halting Problem is undecidable, it follows that all these problems are also undecidable.

We now define reducibility.

Definition 21 Let L1 and L2 be any two languages over some finite alphabet E. We
say that L1 is Turing reducible to L2, written L, <T L 2 if and only if there is a recursive
function F : E* . E* that maps elements of L1 to elements of L 2 and elements of L, to
elements of L 2 .

In other words, there is a Turing Machine A4 with the following properties. If the input
to ," is an element of LI, /"' writes an element of L2 on its tape before halting. If the
input to A4 is an element of LI, A, writes an element of L2 on its tape before halting.
Note that several types of reducibility have been studied in the literature. For this paper,
however, we will only be concerned with Turing reducibility. For the rest of this paper.
we use the term "reducibility" to denote Turing reducibility. We can prove the following
theorem about the halting problem H:

Theorem 5 For any language £, if H <T , then C is not recursive.

PROOF: Suppose for a contradiction that C is recursive; there must be a Turing Machine
,A that halts on every input, such that. L(M) = C. Further, since H is reducible to C.
there is a Turing Machine M' with the following properties. If the i,',,ut to Al' is an

ened

element of H, .4' eventually writes an element of C on its tape and halts. It the i11pul
to .M' is an elelnent of 7H, "•' eventually writes aln element of Z on its tape and halts.

Consider the Turing Machine Al =M' * A. We will show that "-h halts on every
input and L(M+) = H. Since the halting problem is undecidable. this immediately gives
us a contradiction. There are two cases to consider:

1. The input to A4- is an element of H. In this case, Al works as follows. First Al'
runs until completion. Since the input to Al' is an element of H, ,"' writes x. an
element of £ on its tape and halts. Next Ml runs until completion. Since '. the
input to Al, is an element of £ and L(Ml) = , M4 accepts. Thus ."' accepts.

2. The input to M+ is an element of H. In this case, A•-l works as follows. First
M' runs until completion. Since the input to Ml' is an element of H. ."' writes
x, an element of Z on its tape and halts. Next .,l runs until completion. Since x,
the input to Mi, is an element of Z and A"4 halts on every input, ." rejects. Thus
M+ rejects.

We have shown that Ml' halts on every input and that L(,M') = H, giving the desired
contradiction.

In section 2 we will define a problem P in a finite economy and show that the Halting
Problem is reducible to P. From Theorem 5, it follows that P is undecidable.

On the Robustness of the Turing Machine model

Even though the Turing Machine model appears to be simple, it is very powerful. In
this subsection we mention a few of the enhancements of the Turing Machine model that
do not increase its power. We hope that this gives the reader some intuition for the
robustness of the Turing Machine model:

Two-way infinite tapes: The Turing Machine model presented in this paper assumes
that the tape is infinite in only one direction. With this enhancement, we allow
the tape to be infinite in both directions.

Multiple tapes: With this enhancement, the Turing Machine is allowed to have sev-
eral tapes, each of which has its own tape head. Each tape can be controlled
independently.

Multiple tape heads: With this enhancement, the Turing Machine is allowed to have
many tape heads on each tape. This allows the Turing Machine to read different
cells of the tape simultaneously. Each tape head can be controlled independently.

Multi-dimensional tapes: The Turing Machine model presented in this paper assumes
that the tape is 1-dimensional. With this enhancement, we allow the tape to be
multi-dimensional and infinite in all dimensions.

:):I

By introducing non-determinism: The Turing Machine niodel presel,t(!d in this pa-
per is completely deterministic. i.e., based on the current state of a Turing Machine
and its state transition function, it is possible to determine the next state of the
Turing Machine. There are several ways to bypass this restriction. One obvious
way is to allow the Turing Machine to toss a coin at each step and make its tran-
sition based on (1) its current state, (2) the value in the tape cell below ils tape
head and (3) the result of the coin toss. Other ways of eliminating determinism
such as non-determinism and alternation have also been considered. For a detailed
description, the reader is referred to [5].

None of the enhancements mentioned above increase the power of the Turing Machine
model. Furthermore, even if we apply a combination of these enhancements. the com-
puting power of the Turing Machine model remains unchanged. More precisely, given
any Turing Machine M that uses some or all of the enhancements mentioned above.
there exists a Turing Machine A4' without any enhancements such that (a) A.' accepts
if and only if AI accepts, (b) Al' rejects if and only if /l rejects and (c) AI' neither
accepts nor re;ects if and only if A4 neither accepts nor rejects. The proof of this fact is
beyond the scope of this paper: for this, the reader is referred to [51.

341

Acknowledgments

We would like to thank Karl Shell for his valuable advice and comments on the result.
We would like to thank Mike Reiter, Sonal Deshpande and Nish Shah for their uselul
comments on previous drafts of this paper and James Grosjean for his thorough read-
ing and revealing comments. Siddhý,rth thanks John Curran, Mark Fisher and James
Grosjean for expanding the bounds of his rationality.

3, 5

References

[1] Ken Binmore. Debavesing game theory. June 1991. Lectire for the lnternatioinal
Conference on Game Theory, Florence.

[2] A. Church. An unsolvable problem of elementary number theorv. Am • ,,can ,
of Mathematics, 58:345-363, 1936.

[3] Kurt G6del. On Formally Undecidable Propositions. Basic Books, Ncw Yoik, NY.
1962.

[4] Douglas R. Hofstadter. G6del. Escher, Bach: An Eternal Goldcn B1, ad. ftandom
House, Inc., New York, NY, 1989.

[5] J. Hopcroft and J. Ullman. Introduction to Aatomata Theory, Lai'a :. ano
Co 1putation. Addison-Wesley, Reading, 1979.

[6] Dexter Kozen. Lecture notes for introduction to theory of computation. Lc.cture
notes for Cornell University course CS381, 1992.

[7] Robert E. Lucas Jr. On the mechanics of economic development. Journal of Mon-
etary Economics, 22, 1988.

[8] E. Post. Finite combinatory V cesses -- formulation. 1. Journal of Symbolic Logir,
1, 1936.

[9] John H. Reif, J.D. Tygar, and Akitoshi Yoshida. The computability and complexity
of optical beam tracing. In Proceedings of the Thirly-firsi Symposium on Founda-
tions of Computer Science, pages 106-114, June 1990.

10] Thomas J. Sargent. Dynamic Macroeconomic Theory. Harvard University Press.
Cambridge MA, 1987.

[11] Eugene Silberberg. The structure of economics : a mathematical ant.'ysis. McGraw-
Hill, 1978.

[12] Stephen E. Spear. Learning rational expectations under computability constraints.
Econometrica, 57(4):889-910, 1989.

[13] Robert Townsend. Models of money with spatially separated agents. In J.Hi. Kareken
and Neil Wallace, editors, Models of Monetary Economies, pages 265-304. Federal
Reserve Bank of Minneapolis, Minneapolis, 1980.

[14] A.M. Turing. On computable numbers with an application to the Entscheidungs-
problem. Proceedings of the London Math. Society, 2, 1936.

[151 Neil Wallace. Models of Overlapping Generations: An Expositio,. University of
Minnesota, Minneapolis MN, 1978.

,161tI Henry Y. Wan (Jr,), The new clasical ecoomiics - a game-theoretic cilkqu,. In
(;eorge R Feiwel. editor. Issues in conht(mpvrury mMUro (oCflomICS Ud d1tst4IutNo1t,

page 237. State Vniversity of New York Press, Albany. 1985.

